8,139 research outputs found

    Detailed state model of CaMKII activation and autophosphorylation

    Get PDF
    By combining biochemical experiments with computer modelling of biochemical reactions we elucidated some of the currently unresolved aspects of calcium-calmodulin-dependent protein kinase II (CaMKII) activation and autophosphorylation that might be relevant for its physiological function and provided a model that incorporates in detail the mechanism of CaMKII activation and autophosphorylation at T286 that is based on experimentally determined binding constants and phosphorylation rates. To this end, we developed a detailed state model of CaMKII activation and autophosphorylation based on the currently available literature, and constrained it with data from CaMKII autophosphorylation essays. Our model takes exact phosphorylation patterns of CaMKII holoenzymes into account, and is valid at physiologically relevant conditions where the concentrations of calcium and calmodulin are not saturating. Our results strongly suggest that even when bound to less than fully calcium-bound calmodulin, CaMKII is in the active state, and indicate that the autophosphorylation of T286 by an active non-phosphorylated CaMKII subunit is significantly faster than by an autophosphorylated CaMKII subunit. These results imply that CaMKII can be efficiently activated at significantly lower calcium concentrations than previously thought, which may explain how CaMKII gets activated at calcium concentrations existing at synapses in vivo. We also investigated the significance of CaMKII holoenzyme structure on CaMKII autophosphorylation and obtained estimates of previously unknown binding constants

    The Economic Effects of Unions in Latin America: Their Impact on Wages and the Economic Performance of Firms in Uruguay

    Get PDF
    This study examines the impact of unionization and the level of centralization in bargaining, at the level of the industry or the firm, on wages and on the economic performance of firms within the manufacturing sector in Uruguay, using a panel of establishments for the period 1988 to 1995. In doing so, we control for the degree of exposure to international and regional competition as well as for industry and firm characteristics. The main findings suggest that unionization increases wages and employment and promotes investment due to firms substituting labor by capital. Unions tend to organize in those plants with highest rates of profits, but promote increases in productivity and prevent profitability increases. The mechanism at work seems to be that firms moved to more capital-intensive technologies, hence increasing the rate of growth of labor productivity and reducing that of profitability. Given the negative effect of unionization at the industry level on the rate of growth of profitability of firms, results also suggest that unions tended to organize and to be stronger in those sectors in which extra rents were higher due to monopoly power. The evidence also suggests that firm-level negotiations take into account the interests of both parties, so that enhanced productivity and probably survival were achieved together with lower rates of substitution between labor and capital and/or lower profits.

    An exact formalism to study the thermodynamic properties of hard-sphere systems under spherical confinement

    Full text link
    This paper presents a modified grand canonical ensemble which provides a new simple and efficient scheme to study few-body fluid-like inhomogeneous systems under confinement. The new formalism is implemented to investigate the exact thermodynamic properties of a hard sphere (HS) fluid-like system with up to three particles confined in a spherical cavity. In addition, the partition function of this system was used to analyze the surface thermodynamic properties of the many-HS system and to derive the exact curvature dependence of both the surface tension and adsorption in powers of the density. The expressions for the surface tension and the adsorption were also obtained for the many- HS system outside of a fixed hard spherical object. We used these results to derive the dependence of the fluid-substrate Tolman length up to first order in density.Comment: 6 figures. The paper includes new exact results about hard spheres fluid-like system

    Spectroscopy of Close Companions to QSOs and the Ages of Interaction-Induced Starbursts

    Get PDF
    We present low-resolution absorption-line spectra of three candidate close ( < 3 arcsec) companions to the low redshift QSOs 3CR 323.1, PG 1700+518, and PKS 2135-147. The spectra were obtained with LRIS on the Keck telescopes and with the Faint Object Spectrograph on the University of Hawaii 2.2 m telescope. For 3CR 323.1 and PG 1700+518, we measure relative velocities that are consistent with an association between the QSOs and their companion galaxies. The spectral features of the companion galaxy to 3CR 323.1 indicate a stellar population of intermediate age (approx. 2.3 Gyr). In contrast, the spectrum of the companion object to PG 1700+518 shows strong Balmer absorption lines from a relatively young stellar population, along with the Mg Ib absorption feature and the 4000 A break from an older population. By modeling the two stellar components of this spectrum, it is possible to estimate the time that has elapsed since the end of the most recent major starburst event: we obtain approx. 0.1 Gyr. This event may have coincided with an interaction that triggered the QSO activity. Finally, our spectroscopy shows conclusively that the supposed companion to PKS 2135-147 is actually a projected Galactic G star.Comment: 10 pages, 5 Postscript figures. Latex (AASTEX). To appear in ApJ. Letters, Volume 480 (1997

    Non-thermal radiation from Cygnus X-1 corona

    Full text link
    Cygnus X-1 was the first X-ray source widely accepted to be a black hole candidate and remains among the most studied astronomical objects in its class. The detection of non-thermal radio, hard X-rays and gamma rays reveals the fact that this kind of objects are capable of accelerating particles up to very high energies. In order to explain the electromagnetic emission from Cygnus X-1 in the low-hard state we present a model of a black hole corona with both relativistic lepton and hadron content. We characterize the corona as a two-temperature hot plasma plus a mixed non-thermal population in which energetic particles interact with magnetic, photon and matter fields. Our calculations include the radiation emitted by secondary particles (pions, muons and electron/positron pairs). Finally, we take into account the effects of photon absorption. We compare the results obtained from our model with data of Cygnus X-1 obtained by the COMPTEL instrument.Comment: 6 pages, 10 figures, presented as a poster in HEPRO II, Buenos Aires, Argentina, October 26-30 2009 / accepted for publication in Int. Jour. Mod. Phys.

    Neutrino oscillation probabilities through the looking glass

    Full text link
    In this paper we review different expansions for neutrino oscillation probabilities in matter in the context of long-baseline neutrino experiments. We examine the accuracy and computational efficiency of different exact and approximate expressions. We find that many of the expressions used in the literature are not precise enough for the next generation of long-baseline experiments, but several of them are while maintaining comparable simplicity. The results of this paper can be used as guidance to both phenomenologists and experimentalists when implementing the various oscillation expressions into their analysis tools.Comment: 32 pages, 6 figure

    DNA meets the SVD

    Get PDF
    This paper introduces an important area of computational cell biology where complex, publicly available genomic data is being examined by linear algebra methods, with the aim of revealing biological and medical insights
    corecore